Advanced Networking and Distributed Systems

Introduction to Distributed Systems

GW CSCI 3907/6907 Timothy Wood and Lucas Chaufournier

Grading

Assignments = 50%

- 3 so far, 3-4 more
- Final assignment will have greater weight

Exams = 40%

- Midterm (today!)
- Quizzes (starting soon!)

Participation = 10%

- In class Q&A
- Surveys

From Networks to Distributed Systems

Networking:

- Protocols to provide efficient, reliable communication

Distributed Systems:

- ???

Why are distributed systems hard?

Challenges

Heterogeneity

- Different types of hardware/resources

Openness

- Different components need to be able to reach each other, protocols need to be understandable for others to join

Security

- can be under attack, or components could be malicious

Failure Handling

 need to recover from some components failing, can affect load distribution, single point of failure, detection of failure vs slow network

Concurrency

Challenges

Concurrency

handle processing many tasks at once, load assignment, data consistency

Quality of Service

- performance impact of slow components

Scalability

- Should be able to make use of more resources to get better performance

Transparency

- What abstractions to make visible and what to hide

Types of Distributed Systems

Example Distributed Systems?

Req/Response google.com Stream Processing Twitch Spark

Database

Batch Processing Hadoop

Dist Infrastructure velocity9 AWS blockchain microkernel OS

Tim Wood - The George Washington University - Department of Computer Science

Distributed System

Any multi-threaded program!

Multiple components that need to interact

Tim Wood - The George Washington University - Department of Computer Science

Big Data Analytics

Volume: The amount of data companies want to analyze is growing tremendously

- 40 trillion gigabytes by 2020

Variety: Data is often unstructured and/or user generated

- Tweets, videos, biometrics, much more

Velocity: Analysis must be fast to be useful

- 1TB of new data generated by NY Stock exchange each day

Map Reduce & Hadoop

Map Reduce was developed at Google

- Large scale analytics
- Uses commodity servers
- Includes a distributed storage system
- Schedules tasks close to where data is located
- Detects and repeat failed or slow tasks
- New programming model: Map & Reduce

Hadoop is an open source version of Map Reduce

- Ideas are basically interchangeable

Map Reduce Flow

Stream Processing

Hadoop is for **batch** processing

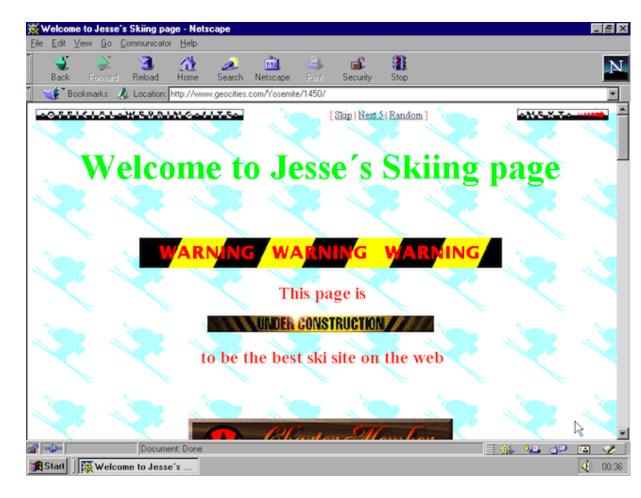
- Long running jobs (minutes, hours total)

Sometimes you want **stream** processing

- Continuously arriving data with millisecond scale response

Storm is basically Hadoop for streams

- Define a graph of processing nodes
- Stream data through the graph
- Manage the workers (each executing a part of the graph)
- Detect failure, carefully buffer data in queues, etc

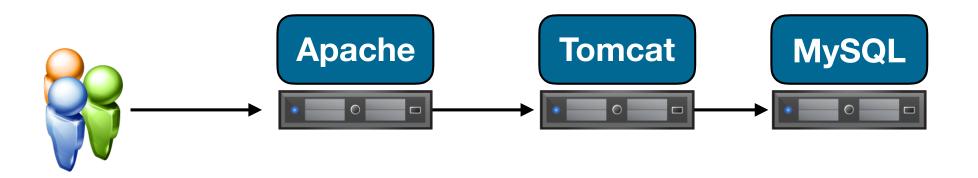

Antique Web Servers

Serve static content

- Read a file from disk and send it back to the client
- images, HTML

Dynamic Content

- CGI Bin
- executes a program
- Not very safe or convenient for development...


3-tier Web Applications

LAMP = Linux, Apache, MySQL, PHP

Separation of duties:

- Front-end web server for static content (Apache, lighttpd, nginx)
- Application tier for dynamic logic (PHP, Tomcat, node.js)
- Database back-end holds state (MySQL, MongoDB, Postgres)

Why divide up in this way?

Stateful vs Stateless

The multi-tier architecture is based largely around whether a tier needs to worry about state

Front-end - totally stateless

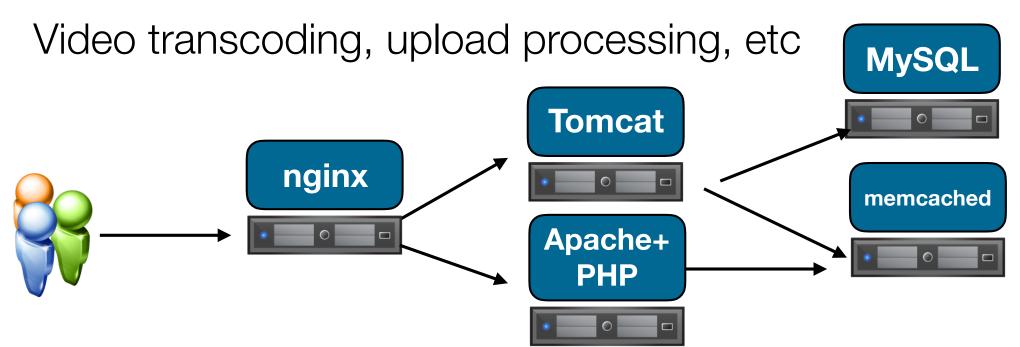
- There is no data that must be maintained by the server to handle subsequent requests

Application tier - maintains per-connection state

- There is some temporary data related to each user, e.g., my shopping cart
- May not be critical for reliability might just store in memory

Database tier - global state

- Maintains the global data that application tier might need
- Persists state and ensures it is consistent

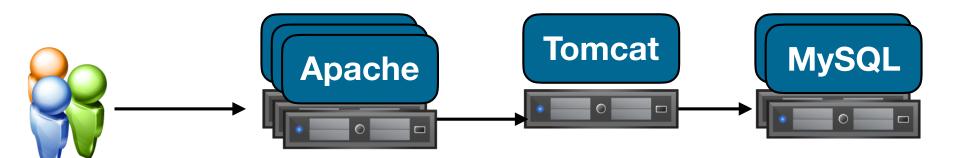

N-Tier Web Applications

Sometimes 3 tiers isn't quite right

Database is often a bottleneck

- Add a cache! (stateful, but not persistent)

Authentication or other security services could be another tier


Tim Wood - The George Washington University - Department of Computer Science

Replicated N-Tier

Replicate the portions of the system that are likely to become overloaded

How easy to scale...?

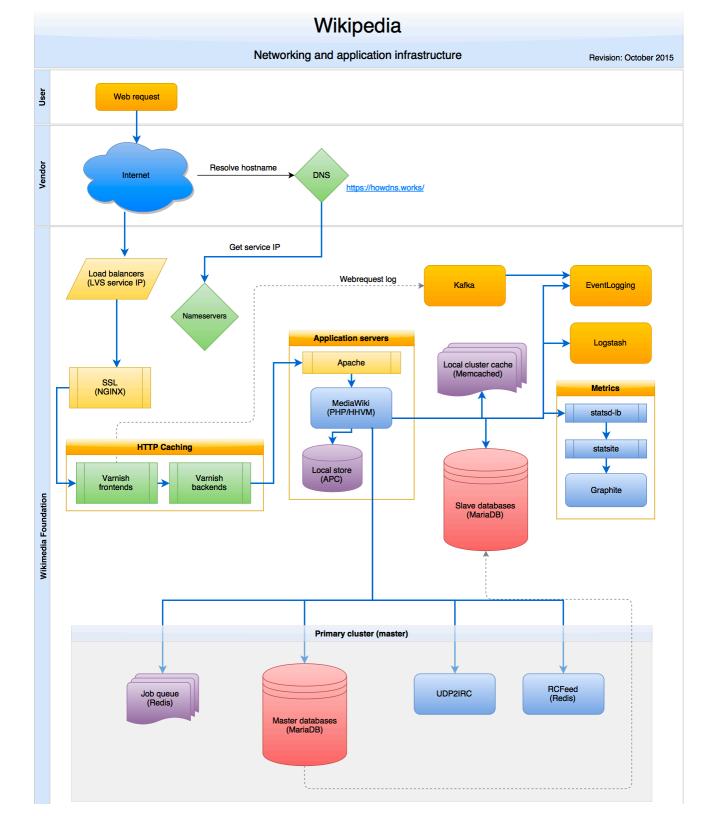
- Apache serving static content
- Tomcat Java application managing user shopping carts
- MySQL cluster storing products and completed orders

Tune number of replicas based on demand at each tier

Wikipedia: Big scale, cheap

5th busiest site in the world (according to alexa.com)

Runs on about ~ 1000 servers? (700 in 2012)


All open source software:

- PHP, MariaDB, Squid proxy, memcached, Ubuntu

Goals:

- Store lots of content (6TB of text data as of 2018)
- Make available worldwide
- Do this as cheaply as possible
- Relatively weak consistency guarantees

Stats: https://grafana.wikimedia.org

