
Advanced Networking
and Distributed

Systems

Module 3: Network Middleboxes

GW CSCI 3907/6907
Timothy Wood and Lucas Chaufournier

Tim Wood - The George Washington University - Department of Computer Science

Upcoming
Tuesday 2/18

- Class: lecture on network middleboxes, info about midterm
- DUE 11:59pm: submit code review of another group's PR (don't need

to fix anything yet, just comment on another group)

Thursday 2/20
- DUE 11:59pm: tech blog

Tuesday 2/25
- Class: intro to distributed systems and MIDTERM

Sunday 3/1
- DUE 11:59pm: Corrected code for your PR due (fix your own PR by

this date)

Tuesday 3/3
- Class: more on distributed systems

2

Tim Wood - The George Washington University - Department of Computer Science

Middleboxes

3

Client Server

Middlebox

Tim Wood - The George Washington University - Department of Computer Science

Network Functions (NFs)
Switches, routers, firewalls, NAT

- Simple packet header analysis and forwarding

Intrusion Detection Systems (IDS)
- Deep packet inspection (DPI) beyond header to detect threats
- Must have high scalability to observe full packet flows

Intrusion Prevention Systems (IPS)
- Similar to IDS, but deployed in-line, so it can actively manipulate

traffic flows
- Must be efficient to avoid adding delay

Cellular functions (Evolved Packet Core - EPC, 5G)
- Mobility management, accounting, security, etc.

Proxies, caches, load balancers, etc.
4

AKA “middleboxes"

Tim Wood - The George Washington University - Department of Computer Science

Network Data Plane
Perform network functionality on custom ASICs

Fast, expensive, inflexible

5

Tim Wood - The George Washington University - Department of Computer Science

Network Function Virtualization
Make an efficient,
customizable data plane

- routers, switches, firewalls,
proxies, IDS, DPI, etc

Run network functions
(NFs) in virtual machines

- More flexible than hardware
- Isolates functionality, easy to

deploy and manage
- Slower than hardware…

6

Router Firewall

Virtualization Layer

Commodity Server

Router Switch

Tim Wood - The George Washington University - Department of Computer Science

Software-Based Data Plane
Hardware Routers and Switches

- Expensive, single purpose
- Controllable with SDNs, but not flexible

PacketShader [Han, SIGCOMM ’10]
- Use commodity servers and GPUs
- 39 Gbps processing rates

Netmap [Rizzo, ATC ’12] and DPDK
- Libraries to provide zero-copy network 

processing on commodity 10gbps NICs

ClickOS [Martins, NSDI ’14] and NetVM [Hwang, NSDI ’14]
- VM based network services
- Flexible deployment and composition

7

Tim Wood - The George Washington University - Department of Computer Science

Linux Packet Processing
Traditional networking:

- NIC uses DMA to copy data into kernel buffer
- Interrupt when packets arrive
- Copy packet data from kernel space to user space
- Use system call to send data from user space

8

Linux

User Applications

H/W Platform

Packet copy
Interrupt Handling
Systemcalls

Can you handle being
interrupted 60 million
times per second?

Tim Wood - The George Washington University - Department of Computer Science

User Space Packet Processing
Recent NICs and OS support allow user space apps
to directly access packet data

- NIC uses DMA to copy data into kernel user space buffer
- Interrupt use polling to find when packets arrive
- Copy packet data from kernel space to user space
- Use system regular function call to send data from user space

9

Tim Wood - The George Washington University - Department of Computer Science

Data Plane Development Kit
High performance I/O library
Poll mode driver reads packets from NIC
Packets bypass the OS and are copied directly into
user space memory

Low level library... does not provide:
- Support for multiple network functions
- SDN-based control
- Interrupt-driven NFs
- State management
- TCP stack

10

Tim Wood - The George Washington University - Department of Computer Science

Data Plane Development Kit
Where to find it:

- http://dpdk.org/

What to use it for:
- Applications that need high speed access to low-level packet

data

Why try it:
- One of the best documented open source projects I've ever seen

Alternatives:
- netmap
- PF_RING

11

Network Platforms Group

Packet Size 64 bytes
40G Packets/second 59.5 Million each way
Packet arrival rate 16.8 ns

2 GHz Clock cycles 33 cycles

Typical Server Packet Sizes Network Infrastructure Packet Sizes
Packet Size (B)

Pa
ck

et
s

pe
r s

ec
on

d

0

15,000,000

30,000,000

45,000,000

60,000,000

64 224 384 544 704 864 1024 1184 13441504

What is “line rate”?

Packet Size 1024 bytes
40G Packets/second 4.8 Million each way

Packet arrival rate 208.8 ns
2 GHz Clock cycles 417 cycles

40 Gbps Line Rate (or 4x10G)

Process
Packet

Tx

Rx

12

Network Platforms Group

How to Eliminate / Hide Overheads?

13

Interrupt		
Context		
Switch	

Overhead

Kernel	
User	

Overhead

Core	To	
Thread	

Scheduling	
Overhead

Polling	

User	
Mode	
Driver

Pthread	
Affinity

	4K	
Paging	

Overhead	

PCI	Bridge	
I/O	

Overhead

Huge	Pages	

Lockless	Inter-core	
	Communication	

High	Throughput		
Bulk	Mode	I/O	calls

Tim Wood - The George Washington University - Department of Computer Science

Network Interrupts
Very distracting! Have to stop doing useful work to
handle incoming packets

Coalescing interrupts helps, but still causes problems

- Interrupts can arrive during critical sections!
- Interrupts can be delivered to the wrong CPU core!
- Still must pay context switch cost

14

App Kernel AppKernel

App AppKernel

Interrupt		
Context		
Switch	

Overhead

Tim Wood - The George Washington University - Department of Computer Science

Polling
Continuously loop looking for new packet arrivals
Trade-off?

15

Interrupt		
Context		
Switch	

Overhead

AppKernel AppKernelApp

Interrupts help share the CPU

App App

Polling can be wasteful

Busy wait

Tim Wood - The George Washington University - Department of Computer Science

Kernel-User Overhead
NIC Driver operates in
kernel mode

- Reads packets into kernel
memory

- Stack pulls data out of
packets

- Data is copied into user
space for application

- Application uses system
calls to interface with OS

Why is copying so
bad?

16

Kernel  
Space

Driver

User 
Space

NIC

Applications

Stack

System Calls

CSRs

Interrupts

Memory (RAM)

Packet Data

Copy

Kernel Space Driver

Configuration

Descriptors

DMA

Descriptor 
Rings

Socket
Buffers
(skb’s)

1

2

3

Kernel	
User	

Overhead

From Intel DPDK
University Lecture

Tim Wood - The George Washington University - Department of Computer Science

Kernel Bypass
User-mode Driver

- Kernel only sets up basic
access to NIC

- User-space driver tells NIC
to DMA data directly into
user-space memory

- No extra copies
- No in-kernel processing
- No context switching

17

Kernel	
User	

Overhead

Kernel  
Space

UIO Driver

User 
Space

NIC

DPDK PMD

Stack

System Calls

CSRs

Memory (RAM)

Packet Data

User Space Driver

Configuration

Descriptors

DMA

Descriptor 
Rings

1

2

From Intel DPDK
University Lecture

DPDK Application

Descriptors

Tim Wood - The George Washington University - Department of Computer Science

Linux Kernel Map

18

Tim Wood - The George Washington University - Department of Computer Science

Networking
Linux networking 
stack has a lot of 
extra components

For NFV middlebox 
we don’t use all of
this:

- TCP, UDP, sockets

NFV middle boxes
just need packet data

- Need it fast!

19

Application

Kernel	
User	

Overhead

Tim Wood - The George Washington University - Department of Computer Science

CPU Core Affinity
Linux Scheduler can move threads between cores

- Context switches :(
- Cache locality :(

20

Core	To	
Thread	

Scheduling	
Overhead

App

App

Core 1

App App

Core 2

App

Tim Wood - The George Washington University - Department of Computer Science

CPU Core Affinity
Pin threads and dedicate cores

- Trade-offs?

21

Core	To	
Thread	

Scheduling	
Overhead

App

Core 1

App

Core 3

Core 2

App

Tim Wood - The George Washington University - Department of Computer Science

Trade-off?

Paging Overhead
4KB Pages

- 4 packets per page
- 14 million pps
- 3.6 million page  

table entries every  
second

- Sandy Bridge: 64 entries

1GB Huge Pages
- 1 million packets/page
- 14 page table entries 

every second!

22

	4K	
Paging	

Overhead	

https://courses.cs.washington.edu/courses/cse378/00au/CSE378-00.Lec28/sld004.htm

• Packet ~= 1KB

How big is the TLB?

Tim Wood - The George Washington University - Department of Computer Science

Locks
Thread synchronization is expensive

- Tens of nanoseconds to take an uncontested lock
- 10Gbps -> 68ns per packet

Producer/Consumer architecture
- Gather packets from NIC (producer) and ask worker to process

them (consumer)

Lock-free communication
- Ring-buffer based message queues

23

Tim Wood - The George Washington University - Department of Computer Science

Bulk Operations
PCIe bus uses messaging protocols for CPU to
interact with devices (NICs)
Each message incurs some overhead
Better to make larger bulk requests over PCIe
DPDK helps batch requests into bulk operations

- Retrieve a batch (32) of packet descriptors received by NIC
- Enqueue/dequeue beaches of packet descriptors onto rings

Trade-offs?

24

PCI	Bridge	
I/O	

Overhead

Tim Wood - The George Washington University - Department of Computer Science

Limitations
DPDK provides efficient I/O… but that’s about it

Doesn’t help with NF management or orchestration

25

Tim Wood - The George Washington University - Department of Computer Science

Service Chains
Chain together functionality to build more complex
services

- Need to move packets through chain efficiently

26

Firewall NAT Router

Server

Tim Wood - The George Washington University - Department of Computer Science

Service Chains
Chain together functionality to build more complex
services

- Need to move packets through chain efficiently

27

Firewall

IDS

RouterNAT

Cache

Transcoder

DPI

Mirror

• Can be complex with multiple paths!

Tim Wood - The George Washington University

OpenNetVM NFV Platform

• DPDK: provides underlying I/O engine
• NFs: run inside Docker container, use NFlib API
• Manager: tracks which NFs are active, organizes chains
• Shared memory: efficient communication between NFs 
SDN-aware: Controller can dictate flow rules for NFs

• http://sdnfv.github.io/
28

Container 1

Shared Memory
(packets, flow tables, service chains, ring buffers)

Packet

NF Manager (DPDK)

R TNFlib

NF

RX

Container 2

R T

NF
NFlib 3rd party

library

Container 3

R T

NF
NFlib

Container 4

R T

NF
NFlib custom

distro

NIC 1 NIC 2

TX1 TX2

FT Packet

MgrR TU
se

r S
pa

ce

Made at GW!

http://sdnfv.github.io/

Tim Wood - The George Washington University - Department of Computer Science

Limitations
DPDK only helps  
with raw packet IO
Doesn’t provide any  
protocol stacks!

- No IP
- No TCP or UPD
- No socket interface

29

Tim Wood - The George Washington University - Department of Computer Science

TCP in Linux
Linux TCP stack is not designed for high
performance

- Especially for short flows
- Poor scalability, bad locality, etc
- Same problems we saw with DPDK

30

Unsatisfactory Performance of Linux TCP

3

• Large flows: Easy to fill up 10 Gbps
• Small flows: Hard to fill up 10 Gbps regardless of # cores

– Too many packets:
14.88 Mpps for 64B packets in a 10 Gbps link

– Kernel is not designed well for multicore systems

0.0

0.5

1.0

1.5

2.0

2.5

1 2 4 6 8

Co
nn

ec
tio

ns
/s

ec
 (x

 1
05)

Number of CPU Cores

TCP Connection Setup Performance
Linux: 3.10.16
Intel Xeon E5-2690
Intel 10Gbps NIC

Performance meltdown

Figures from Jeong’s mTCP talk at NSDI 14

Kernel Uses the Most CPU Cycles

4

83% of CPU usage spent
inside kernel!

Performance bottlenecks
1. Shared resources
2. Broken locality
3. Per packet processing

1) Efficient use of CPU cycles
for TCP/IP processing
Æ 2.35x more CPU cycles for app

2) 3x ~ 25x better performance

Bottleneck removed
by mTCPKernel

(without TCP/IP)
45%

Packet I/O
4%

TCP/IP
34%

Application
17%

CPU Usage Breakdown of Web Server
Web server (Lighttpd) Serving a 64 byte file
Linux-3.10

Tim Wood - The George Washington University - Department of Computer Science

mTCP [Jeong, NSDI ’14]
User space TCP stack

- Built on DPDK/netmap (and now OpenNetVM!)

Key Ideas:
- Eliminate shared resources by partitioning flows to independent

threads
- Use batching to minimize overheads
- Epoll interface to support existing end-point applications

31

0

3

6

9

12

15

0 2 4 6 8

Tr
an

sa
ct

io
ns

/s
ec

 (x
 10

5)

Number of CPU Cores

Linux REUSEPORT MegaPipe mTCP

1

Multicore Scalability

• 64B ping/pong messages per connection
• Heavy connection overhead, small packet processing overhead
• 25x Linux, 5x SO_REUSEPORT*[LINUX3.9], 3x MegaPipe*[OSDI’12]

19

Shared fd in process

Shared listen socket

* [LINUX3.9] https://lwn.net/Articles/542629/
* [OSDI’12] MegaPipe: A New Programming Interface for Scalable Network I/O, Berkeley

Inefficient small packet
processing in Kernel

0

3

6

9

12

15

0

3

6

9

12

15

0

3

6

9

12

15

0

3

6

9

12

15 Linux: 3.10.12
Intel Xeon E5-2690
32GB RAM
Intel 10Gbps NIC

Figure from Jeong’s
mTCP talk at NSDI 14

Tim Wood - The George Washington University - Department of Computer Science

mTCP Kernel Bypass
Responding to a packet arrival only incurs a context
switch, not a full system call

32

From System Call to Context Switching

12

Packet I/O

Kernel TCP

Application thread

BSD socket LInux epoll

User-level packet I/O library

mTCP thread

Application Thread

NIC device driver

mTCP socket mTCP epoll
Kernel

User

Linux TCP mTCP

System call Context switching

Figure from Jeong’s
mTCP talk at NSDI 14

Tim Wood - The George Washington University - Department of Computer Science 33

Performance Improvement on Ported Applications

Web Server (Lighttpd)
• Real traffic workload: Static file

workload from SpecWeb2009 set
• 3.2x faster than Linux
• 1.5x faster than MegaPipe

SSL Proxy (SSLShader)
• Performance Bottleneck in TCP
• Cipher suite

1024-bit RSA, 128-bit AES, HMAC-
SHA1

• Download 1-byte object via HTTPS
• 18% ~ 33% better on SSL handshake

20

1.24
1.79

2.69

4.02

0

1

2

3

4

5

Linux REUSEPORT MegaPipe mTCP

Th
ro

ug
hp

ut
 (G

bp
s) 26,762 28,208 27,725

31,710
36,505 37,739

0
5

10
15
20
25
30
35
40

4K 8K 16K

Tr
an

sa
ct

io
ns

/s
ec

 (x
 1

03)

Concurrent Flows

Linux
mTCP

Slide from Jeong’s mTCP talk, NSDI ‘14

Tim Wood - The George Washington University - Department of Computer Science 34

47%

63%

67%

0% 25% 50% 75%

Web security gateway

Mail security gateway

Web application firewall

Virtual Appliances Deployed in Service Provider Data Centers

Most Middleboxes Deal with TCP Traffic

• TCP dominates the Internet
• 95+% of traffic is TCP

• Top 3 middleboxes in service providers rely on L4/L7 semantics

2

[1]
TCP
UDP
etc

[1] “Comparison of Caching Strategies in Modern Cellular Backhaul Networks”, ACM MobiSys 2013.

95.7%

[2] IHS Infonetics Cloud & Data Center Security Strategies & Vendor Leadership: Global Service Provider Survey, Dec. 2014.

[2]

Slide from Jamshed’s mOS talk, NSDI ‘17

Tim Wood - The George Washington University - Department of Computer Science

mOS [Jamshed, NSDI ‘17]
What if your middle box (not end point server) needs
TCP processing?
Proxies, L4/L7 load balancers, DPI, IDS, etc

- TCP state transitions
- Byte stream reconstruction

35

• 50K~100K code lines tightly coupled
with their IDS logic

Borrow code from open-source
IDS (e.g., snort, suricata)

• Designed for TCP end host
• Different from middlebox semantics

Borrow code from open-source
kernel (e.g., Linux/FreeBSD)

• Complex and error-prone
• Repeat it for every custom middlebox

Implement your own
flow management code

Table from Jamshed’s mOS talk, NSDI ‘17

Tim Wood - The George Washington University - Department of Computer Science

mOS [Jamshed, NSDI ‘17]
Reusable protocol stack for middle boxes
Key Idea: Allow customizable processing based on
flow-level “events”
Separately track client and server side state

36

mOS stack emulation

TCP server

Server side
TCP stack

TCP
state

SYN
SYN/ACK

LISTEN

CLOSEDSYN_SENT

Client side
TCP stack

TCP
state

SYN_RCVD

ESTABLISHED

DATA/ACK

Receive
buffer

ESTABLISHED

TCP client

Figure from Jamshed’s
mOS talk at NSDI 17

Tim Wood - The George Washington University - Department of Computer Science

mOS [Jamshed, NSDI ‘17]
Base Events

- TCP connection start/end, packet arrival, retransmission, etc

User Events
- Base event + a filter function (executable code) run in mOS stack

37

2104

765
615

0K
10K
20K
30K
40K
50K
60K
70K
80K
90K

Snort3 nDPI PRADS

Lines Modified

Total Lines

25

1.4 1.2 4.1 3.2 5.0 4.5

16.7
11.6

22.8 21.7

53.0

42.5

0

10

20

30

40

50

60

 1 4 16 1 4 16

Th
ro

ug
hp

ut
 (G

bp
s)

(# of CPU cores)
Counting packets Searching for a string

64B file 8KB file

1 4 16 1 4 16

Figures from Jamshed’s
mOS talk at NSDI 17

Tim Wood - The George Washington University - Department of Computer Science

TCP + OpenNetVM
We have ported mOS/mTCP to run on OpenNetVM
Allows deployment of mixed NFs and endpoints
Allows several different mTCP endpoints on same
host

38

NF Manager

mTCPNF NF

lighttpd

mOS

Proxy

Made at GW!

Tim Wood - The George Washington University - Department of Computer Science

TCP + OpenNetVM
Mixed NFs + endpoints blurs the line of the
application and the network

- NF services could expose APIs to work with endpoints

39

NF Manager

mTCPNF NF

lighttpd

mOS

Proxy

Made at GW!

Networking Exam

What to expect

Tim Wood - The George Washington University - Department of Computer Science

Midterm
What have we covered?

41

Tim Wood - The George Washington University - Department of Computer Science

Course Outline
Network Layering

- Protocol layers, software layers, etc

Socket APIs
- Don’t need to know code, but should be able to read it

UDP and TCP
- Pros and cons, basic principles

Threading Architectures
- Thread pools, go routines, non-blocking / event based

Performance Metrics
- Latency vs Throughput, what affects each, basic equations

Middleboxes
- Kernel bypass principles

42

Tim Wood - The George Washington University - Department of Computer Science

Midterm
Questions to test your understanding

- Apply principles, not memorize them

Closed book, closed notes
You may bring:

- 1 double sided sheet of 8.5x11 paper
- with handwritten notes

43

