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Upcoming
Tuesday 2/18  

- Class: lecture on network middleboxes, info about midterm 
- DUE 11:59pm: submit code review of another group's PR (don't need 

to fix anything yet, just comment on another group) 

Thursday 2/20  
- DUE 11:59pm: tech blog 

Tuesday 2/25  
- Class: intro to distributed systems and MIDTERM 

Sunday 3/1 
- DUE 11:59pm: Corrected code for your PR due (fix your own PR by 

this date) 

Tuesday 3/3  
- Class: more on distributed systems
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Middleboxes
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Network Functions (NFs)
Switches, routers, firewalls, NAT 

- Simple packet header analysis and forwarding  

Intrusion Detection Systems (IDS) 
- Deep packet inspection (DPI) beyond header to detect threats 
- Must have high scalability to observe full packet flows 

Intrusion Prevention Systems (IPS) 
- Similar to IDS, but deployed in-line, so it can actively manipulate 

traffic flows 
- Must be efficient to avoid adding delay  

Cellular functions (Evolved Packet Core - EPC, 5G) 
- Mobility management, accounting, security, etc. 

Proxies, caches, load balancers, etc.
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AKA “middleboxes"
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Network Data Plane
Perform network functionality on custom ASICs 

Fast, expensive, inflexible
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Network Function Virtualization
Make an efficient, 
customizable data plane 

- routers, switches, firewalls, 
proxies, IDS, DPI, etc 

Run network functions 
(NFs) in virtual machines 

- More flexible than hardware 
- Isolates functionality, easy to 

deploy and manage 
- Slower than hardware…
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Software-Based Data Plane
Hardware Routers and Switches 

- Expensive, single purpose 
- Controllable with SDNs, but not flexible 

PacketShader [Han, SIGCOMM ’10] 
- Use commodity servers and GPUs 
- 39 Gbps processing rates 

Netmap [Rizzo, ATC ’12] and DPDK 
- Libraries to provide zero-copy network 

processing on commodity 10gbps NICs 

ClickOS [Martins, NSDI ’14] and NetVM [Hwang, NSDI ’14] 
- VM based network services 
- Flexible deployment and composition
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Linux Packet Processing 
Traditional networking: 

- NIC uses DMA to copy data into kernel buffer 
- Interrupt when packets arrive 
- Copy packet data from kernel space to user space 
- Use system call to send data from user space
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Linux

User Applications

H/W Platform

Packet copy
Interrupt Handling
Systemcalls

Can you handle being 
interrupted 60 million 
times per second?
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User Space Packet Processing
Recent NICs and OS support allow user space apps 
to directly access packet data 

- NIC uses DMA to copy data into kernel user space buffer 
- Interrupt use polling to find when packets arrive 
- Copy packet data from kernel space to user space 
- Use system regular function call to send data from user space
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Data Plane Development Kit
High performance I/O library 
Poll mode driver reads packets from NIC 
Packets bypass the OS and are copied directly into 
user space memory 

Low level library... does not provide: 
- Support for multiple network functions 
- SDN-based control 
- Interrupt-driven NFs 
- State management 
- TCP stack
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Data Plane Development Kit
Where to find it: 

- http://dpdk.org/ 

What to use it for: 
- Applications that need high speed access to low-level packet 

data 

Why try it: 
- One of the best documented open source projects I've ever seen 

Alternatives: 
- netmap 
- PF_RING
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Packet Size 64 bytes
40G Packets/second 59.5 Million each way
Packet arrival rate 16.8 ns

2 GHz Clock cycles 33 cycles

Typical Server Packet  Sizes Network Infrastructure Packet Sizes
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What is “line rate”?

Packet Size 1024 bytes
40G Packets/second 4.8 Million each way

Packet arrival rate 208.8 ns
2 GHz Clock cycles 417 cycles

40 Gbps Line Rate (or 4x10G)
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How to Eliminate / Hide Overheads?
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Network Interrupts
Very distracting! Have to stop doing useful work to 
handle incoming packets 

Coalescing interrupts helps, but still causes problems 

- Interrupts can arrive during critical sections! 
- Interrupts can be delivered to the wrong CPU core! 
- Still must pay context switch cost
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Polling
Continuously loop looking for new packet arrivals 
Trade-off? 
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Kernel-User Overhead
NIC Driver operates in 
kernel mode 

- Reads packets into kernel 
memory 

- Stack pulls data out of 
packets 

- Data is copied into user 
space for application 

- Application uses system 
calls to interface with OS 

Why is copying so 
bad?
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Kernel Bypass
User-mode Driver 

- Kernel only sets up basic 
access to NIC 

- User-space driver tells NIC 
to DMA data directly into 
user-space memory 

- No extra copies 
- No in-kernel processing 
- No context switching
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Linux Kernel Map

18
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Networking
Linux networking 
stack has a lot of 
extra components 

For NFV middlebox 
we don’t use all of 
this: 

- TCP, UDP, sockets 

NFV middle boxes 
just need packet data 

- Need it fast!
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CPU Core Affinity
Linux Scheduler can move threads between cores 

- Context switches :( 
- Cache locality :(
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CPU Core Affinity
Pin threads and dedicate cores 

- Trade-offs?
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Trade-off?

Paging Overhead
4KB Pages 

- 4 packets per page 
- 14 million pps 
- 3.6 million page  

table entries every  
second 

- Sandy Bridge: 64 entries 

1GB Huge Pages 
- 1 million packets/page 
- 14 page table entries 

every second!
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• Packet ~= 1KB

How big is the TLB?



Tim Wood - The George Washington University - Department of Computer Science

Locks
Thread synchronization is expensive 

- Tens of nanoseconds to take an uncontested lock 
- 10Gbps -> 68ns per packet 

Producer/Consumer architecture 
- Gather packets from NIC (producer) and ask worker to process 

them (consumer) 

Lock-free communication 
- Ring-buffer based message queues
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Bulk Operations
PCIe bus uses messaging protocols for CPU to 
interact with devices (NICs) 
Each message incurs some overhead 
Better to make larger bulk requests over PCIe 
DPDK helps batch requests into bulk operations 

- Retrieve a batch (32) of packet descriptors received by NIC 
- Enqueue/dequeue beaches of packet descriptors onto rings 

Trade-offs?
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Limitations
DPDK provides efficient I/O… but that’s about it 

Doesn’t help with NF management or orchestration
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Service Chains
Chain together functionality to build more complex 
services 

- Need to move packets through chain efficiently
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Service Chains
Chain together functionality to build more complex 
services 

- Need to move packets through chain efficiently
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Firewall

IDS

RouterNAT

Cache

Transcoder

DPI

Mirror

• Can be complex with multiple paths!
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OpenNetVM NFV Platform  

• DPDK: provides underlying I/O engine 
• NFs: run inside Docker container, use NFlib API 
• Manager: tracks which NFs are active, organizes chains 
• Shared memory: efficient communication between NFs 
SDN-aware: Controller can dictate flow rules for NFs 

• http://sdnfv.github.io/
28

Container 1

Shared Memory
(packets, flow tables, service chains, ring buffers)

Packet

NF Manager (DPDK)

R TNFlib

NF

RX

Container 2

R T

NF
NFlib 3rd party

library

Container 3

R T

NF
NFlib

Container 4

R T

NF
NFlib custom

distro

NIC 1 NIC 2

TX1 TX2

FT Packet

MgrR TU
se

r S
pa

ce

Made at GW!

http://sdnfv.github.io/


Tim Wood - The George Washington University - Department of Computer Science

Limitations
DPDK only helps  
with raw packet IO 
Doesn’t provide any  
protocol stacks! 

- No IP 
- No TCP or UPD 
- No socket interface
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TCP in Linux
Linux TCP stack is not designed for high 
performance 

- Especially for short flows 
- Poor scalability, bad locality, etc 
- Same problems we saw with DPDK
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Unsatisfactory Performance of Linux TCP
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• Large flows: Easy to fill up 10 Gbps
• Small flows: Hard to fill up 10 Gbps regardless of # cores 

– Too many packets: 
14.88 Mpps for 64B packets in a 10 Gbps link

– Kernel is not designed well for multicore systems
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Performance meltdown

Figures from Jeong’s mTCP talk at NSDI 14

Kernel Uses the Most CPU Cycles
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83% of CPU usage spent 
inside kernel!

Performance bottlenecks 
1. Shared resources
2. Broken locality
3. Per packet processing

1) Efficient use of CPU cycles          
for TCP/IP processing
Æ 2.35x more CPU cycles for app

2) 3x ~ 25x better performance 

Bottleneck removed 
by mTCPKernel

(without TCP/IP)
45%

Packet I/O
4%

TCP/IP
34%

Application
17%

CPU Usage Breakdown of Web Server
Web server (Lighttpd) Serving a 64 byte file
Linux-3.10
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mTCP [Jeong, NSDI ’14]
User space TCP stack 

- Built on DPDK/netmap (and now OpenNetVM!) 

Key Ideas: 
- Eliminate shared resources by partitioning flows to independent 

threads 
- Use batching to minimize overheads 
- Epoll interface to support existing end-point applications
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Multicore Scalability

• 64B ping/pong messages per connection
• Heavy connection overhead, small packet processing overhead
• 25x Linux, 5x SO_REUSEPORT*[LINUX3.9], 3x MegaPipe*[OSDI’12]
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Shared fd in process

Shared listen socket

* [LINUX3.9] https://lwn.net/Articles/542629/
* [OSDI’12] MegaPipe: A New Programming Interface for Scalable Network I/O, Berkeley

Inefficient small packet 
processing in Kernel
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mTCP Kernel Bypass
Responding to a packet arrival only incurs a context 
switch, not a full system call
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From System Call to Context Switching
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Packet I/O

Kernel TCP

Application thread

BSD socket LInux epoll

User-level packet I/O library

mTCP thread

Application Thread

NIC device driver

mTCP socket mTCP epoll
Kernel

User

Linux TCP mTCP

System call Context switching

Figure from Jeong’s 
mTCP talk at NSDI 14
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Performance Improvement on Ported Applications

Web Server (Lighttpd)
• Real traffic workload: Static file 

workload from SpecWeb2009 set
• 3.2x faster than Linux
• 1.5x faster than MegaPipe

SSL Proxy (SSLShader)
• Performance Bottleneck in TCP
• Cipher suite

1024-bit RSA, 128-bit AES, HMAC-
SHA1

• Download 1-byte object via HTTPS
• 18% ~ 33% better on SSL handshake
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47%

63%

67%

0% 25% 50% 75%

Web security gateway

Mail security gateway

Web application firewall

Virtual Appliances Deployed in Service Provider Data Centers

Most Middleboxes Deal with TCP Traffic

• TCP dominates the Internet
• 95+% of traffic is TCP

• Top 3 middleboxes in service providers rely on L4/L7 semantics

2

[1]
TCP
UDP
etc

[1] “Comparison of Caching Strategies in Modern Cellular Backhaul Networks”, ACM MobiSys 2013.

95.7%

[2] IHS Infonetics Cloud & Data Center Security Strategies & Vendor Leadership: Global Service Provider Survey, Dec. 2014.

[2]

Slide from Jamshed’s mOS talk, NSDI ‘17
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mOS [Jamshed, NSDI ‘17]
What if your middle box (not end point server) needs 
TCP processing? 
Proxies, L4/L7 load balancers, DPI, IDS, etc 

- TCP state transitions 
- Byte stream reconstruction

35

• 50K~100K code lines tightly coupled 
with their IDS logic

Borrow code from open-source 
IDS (e.g., snort, suricata)

• Designed for TCP end host
• Different from middlebox semantics

Borrow code from open-source 
kernel (e.g., Linux/FreeBSD)

• Complex and error-prone
• Repeat it for every custom middlebox

Implement your own
flow management code

Table from Jamshed’s mOS talk, NSDI ‘17
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mOS [Jamshed, NSDI ‘17]
Reusable protocol stack for middle boxes 
Key Idea: Allow customizable processing based on 
flow-level “events” 
Separately track client and server side state
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TCP client

Figure from Jamshed’s 
mOS talk at NSDI 17
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mOS [Jamshed, NSDI ‘17]
Base Events 

- TCP connection start/end, packet arrival, retransmission, etc 

User Events 
- Base event + a filter function (executable code) run in mOS stack
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TCP + OpenNetVM
We have ported mOS/mTCP to run on OpenNetVM 
Allows deployment of mixed NFs and endpoints 
Allows several different mTCP endpoints on same 
host
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Made at GW!
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TCP + OpenNetVM
Mixed NFs + endpoints blurs the line of the 
application and the network 

- NF services could expose APIs to work with endpoints
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Made at GW!



Networking Exam

What to expect
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Midterm
What have we covered?
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Course Outline
Network Layering 

- Protocol layers, software layers, etc 

Socket APIs  
- Don’t need to know code, but should be able to read it 

UDP and TCP 
- Pros and cons, basic principles 

Threading Architectures 
- Thread pools, go routines, non-blocking / event based 

Performance Metrics 
- Latency vs Throughput, what affects each, basic equations 

Middleboxes 
- Kernel bypass principles
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Midterm
Questions to test your understanding 

- Apply principles, not memorize them 

Closed book, closed notes 
You may bring:  

- 1 double sided sheet of 8.5x11 paper 
- with handwritten notes
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