
Advanced Networking
and Distributed

Systems
Module 2: Scalable Servers  
and Network Performance

GW CSCI 3907/6907
Timothy Wood and Lucas Chaufournier

Tim Wood - The George Washington University - Department of Computer Science

Outline
Weeks 1-3: Network Programming and Protocols

- Writing simple network programs is easy!
- Providing reliable services over a network is hard!

Weeks 4-5: Scalability and Performance
- How can we support many concurrent clients?
- What performance metrics matter for network services?

Weeks 6-7: Network Middleboxes
- How to deploy software between clients and servers?
- How to get the speed of HW and flexibility of SW?

2

Tim Wood - The George Washington University - Department of Computer Science

Server Architecture

How many clients
can this server
handle at once?

3

Tim Wood - The George Washington University - Department of Computer Science

Simplest Architecture
Server is a single thread
Network calls are blocking (recv, accept)

-> server can only handle one client at a time

What happens to other clients who try to connect?

4

Tim Wood - The George Washington University - Department of Computer Science

Simplest Architecture
Server is a single thread
Network calls are blocking (recv,
accept)

- Server can only handle one client at a time

What happens to other clients who
try to connect?

- Incoming connections are buffered by the
OS networking stack

- TCP Backlog parameter controls number
of waiting connections
- How do you think this works?

5

IP

TCP

Driver

Socket

NIC

Application

O
S

Ke
rn

el

Threading!

Tim Wood - The George Washington University - Department of Computer Science

Threading
Allows program to do multiple things at once

- Threads: execution context with its own stack and shared heap
- Processes: execution context with both stack and heap

How many threads or processes can we run?

7

Tim Wood - The George Washington University - Department of Computer Science

Threading
Allows program to do multiple things at once

- Threads: execution context with its own stack and shared heap
- Processes: execution context with both stack and heap

How many threads or processes can we run?
- Depends on available hardware and application type!

Concurrency is limited by…
- Number of CPU cores
- CPU vs IO intensiveness of application
- If CPU bound, then N cores can only run N threads at once
- If I/O bound, then may need >> N threads to keep N cores busy

8

Tim Wood - The George Washington University - Department of Computer Science

Thread Models
How can we use
threads in our
Server?

9

Tim Wood - The George Washington University - Department of Computer Science

Thread Models
How can we use
threads in our
Server?

10

Tim Wood - The George Washington University - Department of Computer Science

Thread Models
When to start
threads?

11

Tim Wood - The George Washington University - Department of Computer Science

Thread Models
When to start
threads?

1. On every new
request create a
new thread

2. When program
starts create a
pool of threads

12

Tim Wood - The George Washington University - Department of Computer Science

Object Pools
Common design pattern when you need to create
and destroy lots of something
Create = malloc
Destroy = free

- Both of these may  
involve slow system  
calls

- Even worse if the thing  
you are creating is a thread!

Object pool just changes an object’s state from idle
to in use or back again

13

idle in use

Tim Wood - The George Washington University - Department of Computer Science

Thread Pool Server
Idle threads wait in
pool
When a client arrives, 
alert an idle thread
How?

- Put new client 
into a queue

- Wake idle thread  
using condition  
variable

- Remove client 
from queue using 
locks for consistency

1414

Idle

Queue

Tim Wood - The George Washington University - Department of Computer Science

Lightweight Threads
All about Go routines!

15

A threads primer

CPU 1 CPU 2 CPU 3

Thread

Allocated
By OS

Thread

4

1mb
Stack

2

1 3

Save/Restore
All System
Registers

3

PC SP

R0 R1

R15 R16

Go Routines

• Golang technique for
concurrent programming.

• An abstraction on
threading.

• Very lightweight and cheap!

• Allow programs to scale
with ease

func helloWorld(){
 fmt.Println("Hello World!")
}

func main(){

 go helloWorld()

 go func(txt string){

 fmt.Println(txt)

 }("Hello World")

}

Go Routines

CPU 1 CPU 2 CPU 3

Thread

Runtime
Allocated

Thread Thread

2kb
Stack

Save/Restore
3 Registers

PC SP

DX

Under the Hood
Sched

runq Waiting

T1 T2 T3

M

OS Thread

*Free

*Sched

SP ID

Cache

Status

G

Thread

Go Routines

CPU 1 CPU 2 CPU 3 CPU 4

Thread Thread Thread

Block

CPU 1 CPU 2 CPU 3 CPU 4

Thread Thread Thread Thread

GC

Blocking Go Routines

Chan

GO

CPU 1 CPU 2 CPU 3 CPU 4

Thread Thread Thread Thread

Non-Blocking Go Routines

Z
Z

Z
Select{

default:

}

Chan

Tim Wood - The George Washington University - Department of Computer Science

More threads?
Is more threads always the answer?
Threads add context switch costs and consume
system resources… is there another way?

23

Non-Blocking IO

Why wait?

Tim Wood - The George Washington University - Department of Computer Science

Blocking Calls
We needed multiple threads because recv blocks

But is it really necessary to wait on recv?
- You already saw in RUDP project that we don’t need to wait

forever; we can just wait for a short time and then return

Blocking / Synchronous IO:
- Go to sleep if no data, get woken up when it arrives

Non-Blocking / Asynchronous IO:
- Check if there is data, do something else if no data, check again

25

Tim Wood - The George Washington University - Department of Computer Science

Simple Non-Blocking
Sockets can be set to non-blocking mode

Then recv calls will not wait for data, just return error

Drawbacks of this approach?

26

import socket
Create a TCP/IP socket in non-blocking mode
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setblocking(0)

while True:
 try:
 data = conn.recv(1024)
 except socket.error:
 print(“No data yet”)

Tim Wood - The George Washington University - Department of Computer Science

Non-Blocking Server
What happens if we have many clients?

Code is messy and inefficient if many clients!

27

Accept all clients…

for client in clients:
 try:
 data = client.recv(1024)
 process(data)
 except socket.error:
 print(“No data yet”)

…

Client 1
Client 2
Client 3
Client n

Tim Wood - The George Washington University - Department of Computer Science

Non-Blocking IO
We need a better way to know what data is ready!
select event polling

- Register a set of IO “file descriptors” you care about
- Sleeps until at least one of them has data -> won’t block!

int select(int nfds, fd_set *readfds, fd_set *writefds,  
 fd_set *errorfds, struct timeval *timeout);

- Assumes a Unix environment where files, sockets, and other
types of IO are all mapped to a file interface

28

Tim Wood - The George Washington University - Department of Computer Science

Select Example

29

import selectors
import socket

sel = selectors.DefaultSelector()
sock = socket.socket()
sock.bind(('localhost', 1234))
sock.listen(100)
sock.setblocking(False)
sel.register(sock, selectors.EVENT_READ, accept)

while True:
 events = sel.select()
 for key, mask in events:
 callback = key.data
 callback(key.fileobj, mask)

def accept(sock, mask):
 conn, addr = sock.accept()
 conn.setblocking(False)
 sel.register(conn,  
 selectors.EVENT_READ, read)

def read(conn, mask):
 data = conn.recv(1000)
 if data:
 conn.send(data)
 else:
 sel.unregister(conn)
 conn.close()

Tim Wood - The George Washington University - Department of Computer Science

Non-blocking Variants
Languages, runtimes, and OS’s typically have several
ways to do non-blocking IO
select: system call for checking if things are ready
epoll / kqueue: app/OS interface for checking if
things are ready (much more efficient than original select)

But now select can be viewed as an API, and might
be implemented with something like epoll.

30

https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/

Tim Wood - The George Washington University - Department of Computer Science

Event-Based Programming
Registering call backs for events can be a simpler
programming model

- Simpler to write… maybe harder to debug!

Adds a layer of abstraction
- Event notification layer checks for events and decides what order

to process them in. Why is this helpful/interesting?
- Could use multiple threads to process the events!

31

Tim Wood - The George Washington University - Department of Computer Science

node.js
Web framework for javascript-based apps
Probably the most popular event based platform

Single threaded event based server!
- Faster and less resource intensive than many multi-threaded

servers!

Other event based frameworks/languages:
- Erlang, Elixir, …

32

Assignment 2

Tim Wood - The George Washington University - Department of Computer Science

Technical Writing
Being able to present ideas is just as important as
being able to write code!
[] Write a blog post on a networking topic

- Must be long enough to be interesting
- You must write some code or run experiments
- Present useful information in an understandable way
- Present useful information in a visually appealing way

34

Tim Wood - The George Washington University - Department of Computer Science

Ideas
Performance comparison of…

- Node.js vs Apache vs nginx vs …
- Thread pool vs new thread per request in language X
- http vs https vs http2

Tutorial on…
- how to use wireshark to analyze HTTP traces or solve a puzzle
- how to gather statistics of public wifi traffic (ethically)
- how to use go co-routines and how they work under the hood
- queueing theory 101 with example measurements
- how to use epoll / select / etc in language X
- everything that happens when you open a page in a browser
- python 2 vs python 3 networking code
- how to generate traffic to benchmark a web server

35

Tim Wood - The George Washington University - Department of Computer Science

Inspiration
Julia Evans’ blog and zines

- https://jvns.ca/

36

Performance

What does it mean to be fast?

This week with 100% more math!

Tim Wood - The George Washington University - Department of Computer Science

Reminders
Assignment 2: Tech Blog due 2/20

Participation is very important!
- Ask and answer questions!
- I almost never want people to answer with the “right” answer
- I want answers that help us discuss the question
- Wrong answers or partial answers are much more useful!

38

Tim Wood - The George Washington University - Department of Computer Science

Metrics
What metrics matter for…

- Amazon’s store front
- Netflix video streaming
- Bank of America’s savings account site
- High Frequency Traders
- My course website

39

Tim Wood - The George Washington University - Department of Computer Science

Metrics
What metrics matter for…

- Amazon’s store front
- Netflix video streaming
- Bank of America’s savings account site
- High Frequency Traders
- My course website

Key metrics:
- Throughput: requests per second or bits per second
- Latency: time to process a request
- Availability: % of time service is available
- Cost: money matters
- more?

40

Tim Wood - The George Washington University - Department of Computer Science

Throughput and Latency
Throughput: units of work completed per time unit
Latency: time from issuing request to getting response
Need more than just the average!

- Min, Avg, Max
- Standard deviation
- More?

41

Tim Wood - The George Washington University - Department of Computer Science 42

Anscombe's quartet from wikipedia

https://www.youtube.com/watch?v=DbJyPELmhJc

Tim Wood - The George Washington University - Department of Computer Science

Throughput and Latency
Throughput: units of work completed per time unit
Latency: time from issuing request to getting response
Need more than just the average!
Distributions are important

- Histograms (or PDF)
- Cumulative Distribution Function (CDF)

43

Tim Wood - The George Washington University - Department of Computer Science

Throughput and Latency
What affects throughput and latency?

44

Client Server

Tim Wood - The George Washington University - Department of Computer Science

Throughput and Latency
What affects throughput?

- Bandwidth of network
- Processor speed on server
- # of processors on server

What affects latency?
- Network distance
- Processor speed on server
- Load on network/server (queueing delays, retransmissions)

45

Client Server

Tim Wood - The George Washington University - Department of Computer Science

Throughput
Can we predict the max capacity of a web server?

- What info do we need?

46

Tim Wood - The George Washington University - Department of Computer Science

Throughput
Can we predict the max capacity of a web server?

- What info do we need?

Service Time = time to process a single request
- with no other load on the system

max capacity =

(for a single processor system)

47

1
service time

Tim Wood - The George Washington University - Department of Computer Science

How does load affect Latency?

48

Workload: req/sec

La
te

nc
y:

 m
illi

se
co

nd
s

Tim Wood - The George Washington University - Department of Computer Science

Latency
What contributes to latency?
How can we quantify this?

49

Tim Wood - The George Washington University - Department of Computer Science

Latency
What contributes to latency?
How can we quantify this?

L = RTT + queueing delay + service time

What affects queueing delay?

50

Tim Wood - The George Washington University - Department of Computer Science

Latency
What contributes to latency?
How can we quantify this?

L = RTT + queueing delay + service time

queueing delay =

51

1
(capacity - load)

1
(100 r/s - 10 r/s) = 0.01s

max capacity and load in req/sec
capacity must be > load

1
(100 r/s - 99 r/s) = 1s

Tim Wood - The George Washington University - Department of Computer Science

How does load affect Latency?

52

Workload: req/sec

La
te

nc
y:

 m
illi

se
co

nd
s

M
ax

 c
ap

ac
ity

Tim Wood - The George Washington University - Department of Computer Science

Latency Distribution
We’ve been looking at average latency
Why would a business/developer care about other
statistics?

53

Tim Wood - The George Washington University - Department of Computer Science

Latency Distribution
We’ve been looking at average latency
Why would a business/developer care about other
statistics?

- Quality of Service (QoS) guarantees might be based on a
percentile like “90% of users have latency < 100 msec”

- Worst case response time can be used to guide timeouts

54

Tim Wood - The George Washington University - Department of Computer Science

Distributions
Data!

55

Tim Wood - The George Washington University - Department of Computer Science

Distributions
Data!

56

Histogram!

Tim Wood - The George Washington University - Department of Computer Science

Latency Distribution
Latency Histogram

57

Latency (msec)

of

 re
qu

es
ts

Tim Wood - The George Washington University - Department of Computer Science

Jupyter Notebooks
Juptyter Notebooks ~ Jupyter Lab ~ ipython
A web based python execution environment

- "GDB for python in a browser!” — Rebecca Shanley

You can do this locally or on Cloud9

58

Use pip with current python version to install stuff
python -m pip install jupyter numpy scipy pandas matplotlib
seaborn

run jupyter on port 8080 (open on cloud9)
ipython3 notebook --ip=0.0.0.0 —port=8080 --no-browser

Get IP from C9 Share menu and use browser to go to  
http://IP:8080/?token=XXXXX

Tim Wood - The George Washington University - Department of Computer Science

Jupyter

59

Create New
python 3
notebook

Write code

<Shift-enter> 
to run a cell

Tim Wood - The George Washington University - Department of Computer Science

Measuring Latency
[] Pick your favorite web site
[] Make 100 http requests, sleep 1 sec after each
[] Record response time for each request
[] Plot a histogram of the response times
[] (optional) Plot a CDF of the response times

Use a library like pandas or matplotlib for graphs
- Your favorite search engine can help!

60

Tim Wood - The George Washington University - Department of Computer Science

Distributions
Data!

61

Histogram!

PDF
CDF

Tim Wood - The George Washington University - Department of Computer Science

CDF
Cumulative Distribution Function

- The integral of a histogram (or PDF)

Tells you what % of
measurements are  
at least X good

50% = median
“Half of all countries 
have an index of at  
least 6.8”

62

Tim Wood - The George Washington University - Department of Computer Science

CDF
Cumulative Distribution Function

- The integral of a histogram (or PDF)

Tells you what % of
measurements are  
at least X good

99th percentile
“Almost all countries 
have an index of at  
least 8.4”

63

Tim Wood - The George Washington University - Department of Computer Science

Latency Distributions
CDF and Percentiles are important for understanding
application performance

- More important to help sad/slow customers than fast ones

64

from https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

Se
rv

ic
e

R
es

po
ns

e
Ti

m
e

Time of day

50th%

85th%
95th%
99th%

Tim Wood - The George Washington University - Department of Computer Science

Service Level Objectives
Performance (or other characteristic) targets

- Also used for things like service up time (e.g., 99% availability)

Why not have a rule for 100%?

65

90% of Get RPC calls will complete in less than 1 ms.
99% of Get RPC calls will complete in less than 10 ms.
99.9% of Get RPC calls will complete in less than 100 ms.

Tim Wood - The George Washington University - Department of Computer Science

Latency Distributions
Why do we have variance in latency?

66

from https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

Se
rv

ic
e

R
es

po
ns

e
Ti

m
e

Time of day

50th%

85th%
95th%
99th%

Tim Wood - The George Washington University - Department of Computer Science

Latency Distributions
Why do we have variance in latency?

- Bursty client workloads, disk seeks, network drops, etc

67

from https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

Se
rv

ic
e

R
es

po
ns

e
Ti

m
e

Time of day

50th%

85th%
95th%
99th%

Code Reviews

Tim Wood - The George Washington University - Department of Computer Science

hello internet
A socket programming resource
[] give your git usernames to prof
[] pick a PR you will review

- You don't need to know the language, but it
will help

[] Clone PR code
[] Review code

- Follow template linked on website

69

Java
C
C++
C#
Go
Lua
Perl
Python
Python/Jupyter
Ruby
Rust
Swift
Scala

