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Outline
Weeks 1-3: Network Programming and Protocols 

- Writing simple network programs is easy! 
- Providing reliable services over a network is hard! 

Weeks 4-5: Scalability and Performance 
- How can we support many concurrent clients? 
- What performance metrics matter for network services? 

Weeks 6-7: Network Middleboxes 
- How to deploy software between clients and servers? 
- How to get the speed of HW and flexibility of SW?
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Server Architecture

How many clients 
can this server 
handle at once?
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Simplest Architecture
Server is a single thread 
Network calls are blocking (recv, accept) 

-> server can only handle one client at a time 

What happens to other clients who try to connect?
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Simplest Architecture
Server is a single thread 
Network calls are blocking (recv, 
accept) 

- Server can only handle one client at a time 

What happens to other clients who 
try to connect? 

- Incoming connections are buffered by the 
OS networking stack 

- TCP Backlog parameter controls number 
of waiting connections 
- How do you think this works?
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Threading!
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Threading
Allows program to do multiple things at once 

- Threads: execution context with its own stack and shared heap 
- Processes: execution context with both stack and heap 

How many threads or processes can we run?
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Threading
Allows program to do multiple things at once 

- Threads: execution context with its own stack and shared heap 
- Processes: execution context with both stack and heap 

How many threads or processes can we run? 
- Depends on available hardware and application type! 

Concurrency is limited by… 
- Number of CPU cores 
- CPU vs IO intensiveness of application 
- If CPU bound, then N cores can only run N threads at once 
- If I/O bound, then may need >> N threads to keep N cores busy
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Thread Models
How can we use 
threads in our 
Server?
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Thread Models
How can we use 
threads in our 
Server?

10



Tim Wood - The George Washington University - Department of Computer Science

Thread Models
When to start 
threads?
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Thread Models
When to start 
threads? 

1. On every new 
request create a 
new thread 

2. When program 
starts create a 
pool of threads
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Object Pools
Common design pattern when you need to create 
and destroy lots of something 
Create = malloc 
Destroy = free 

- Both of these may  
involve slow system  
calls 

- Even worse if the thing  
you are creating is a thread!  

Object pool just changes an object’s state from idle 
to in use or back again
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Thread Pool Server
Idle threads wait in 
pool 
When a client arrives, 
alert an idle thread 
How? 

- Put new client 
into a queue 

- Wake idle thread  
using condition  
variable 

- Remove client 
from queue using 
locks for consistency
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Lightweight Threads
All about Go routines!
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A threads primer
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Go Routines

• Golang technique for 
concurrent programming.


• An abstraction on 
threading.


• Very lightweight and cheap!


• Allow programs to scale 
with ease

func helloWorld(){ 
  fmt.Println("Hello World!") 
} 

func main(){ 

  go helloWorld() 

   
  go func(txt string){ 

    fmt.Println(txt) 

  }("Hello World") 

} 
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Under the Hood
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More threads?
Is more threads always the answer? 
Threads add context switch costs and consume 
system resources… is there another way?
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Non-Blocking IO

Why wait?
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Blocking Calls
We needed multiple threads because recv blocks 

But is it really necessary to wait on recv? 
- You already saw in RUDP project that we don’t need to wait 

forever; we can just wait for a short time and then return 

Blocking / Synchronous IO:  
- Go to sleep if no data, get woken up when it arrives 

Non-Blocking / Asynchronous IO: 
- Check if there is data, do something else if no data, check again
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Simple Non-Blocking
Sockets can be set to non-blocking mode 

Then recv calls will not wait for data, just return error 

Drawbacks of this approach?

26

import socket
# Create a TCP/IP socket in non-blocking mode
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setblocking(0)

while True:
  try:
    data = conn.recv(1024)
  except socket.error:
    print(“No data yet”)
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Non-Blocking Server
What happens if we have many clients? 

Code is messy and inefficient if many clients!
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# Accept all clients…

for client in clients:
  try:
    data = client.recv(1024)
    process(data)
  except socket.error:
    print(“No data yet”)

…

Client 1
Client 2
Client 3
Client n
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Non-Blocking IO
We need a better way to know what data is ready! 
select event polling 

- Register a set of IO “file descriptors” you care about 
- Sleeps until at least one of them has data -> won’t block! 

int select(int nfds, fd_set *readfds, fd_set *writefds,  
           fd_set *errorfds, struct timeval *timeout);

- Assumes a Unix environment where files, sockets, and other 
types of IO are all mapped to a file interface
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Select Example
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import selectors
import socket

sel = selectors.DefaultSelector()
sock = socket.socket()
sock.bind(('localhost', 1234))
sock.listen(100)
sock.setblocking(False)
sel.register(sock, selectors.EVENT_READ, accept)

while True:
    events = sel.select()
    for key, mask in events:
        callback = key.data
        callback(key.fileobj, mask)

def accept(sock, mask):
  conn, addr = sock.accept()
  conn.setblocking(False)
  sel.register(conn,  
     selectors.EVENT_READ, read)

def read(conn, mask):
  data = conn.recv(1000)
  if data:
    conn.send(data)
  else:
    sel.unregister(conn)
    conn.close()
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Non-blocking Variants
Languages, runtimes, and OS’s typically have several 
ways to do non-blocking IO 
select: system call for checking if things are ready 
epoll / kqueue: app/OS interface for checking if 
things are ready (much more efficient than original select) 

But now select can be viewed as an API, and might 
be implemented with something like epoll.
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https://jvns.ca/blog/2017/06/03/async-io-on-linux--select--poll--and-epoll/
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Event-Based Programming
Registering call backs for events can be a simpler 
programming model 

- Simpler to write… maybe harder to debug! 

Adds a layer of abstraction 
- Event notification layer checks for events and decides what order 

to process them in. Why is this helpful/interesting? 
- Could use multiple threads to process the events!
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node.js
Web framework for javascript-based apps 
Probably the most popular event based platform 

Single threaded event based server! 
- Faster and less resource intensive than many multi-threaded 

servers! 

Other event based frameworks/languages:  
- Erlang, Elixir, …

32



Assignment 2



Tim Wood - The George Washington University - Department of Computer Science

Technical Writing
Being able to present ideas is just as important as 
being able to write code! 
[  ] Write a blog post on a networking topic 

- Must be long enough to be interesting 
- You must write some code or run experiments 
- Present useful information in an understandable way 
- Present useful information in a visually appealing way
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Ideas
Performance comparison of… 

- Node.js vs Apache vs nginx vs … 
- Thread pool vs new thread per request in language X 
- http vs https vs http2 

Tutorial on… 
- how to use wireshark to analyze HTTP traces or solve a puzzle 
- how to gather statistics of public wifi traffic (ethically) 
- how to use go co-routines and how they work under the hood 
- queueing theory 101 with example measurements 
- how to use epoll / select / etc in language X 
- everything that happens when you open a page in a browser 
- python 2 vs python 3 networking code 
- how to generate traffic to benchmark a web server

35



Tim Wood - The George Washington University - Department of Computer Science

Inspiration
Julia Evans’ blog and zines 

- https://jvns.ca/
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Performance

What does it mean to be fast?

This week with 100% more math!
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Reminders
Assignment 2: Tech Blog due 2/20 

Participation is very important! 
- Ask and answer questions! 
- I almost never want people to answer with the “right” answer 
- I want answers that help us discuss the question 
- Wrong answers or partial answers are much more useful!
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Metrics
What metrics matter for… 

- Amazon’s store front 
- Netflix video streaming 
- Bank of America’s savings account site 
- High Frequency Traders 
- My course website

39
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Metrics
What metrics matter for… 

- Amazon’s store front 
- Netflix video streaming 
- Bank of America’s savings account site 
- High Frequency Traders 
- My course website 

Key metrics: 
- Throughput: requests per second or bits per second 
- Latency: time to process a request 
- Availability: % of time service is available 
- Cost: money matters 
- more?

40
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Throughput and Latency
Throughput: units of work completed per time unit 
Latency: time from issuing request to getting response 
Need more than just the average! 

- Min, Avg, Max 
- Standard deviation 
- More?

41
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Anscombe's quartet from wikipedia

https://www.youtube.com/watch?v=DbJyPELmhJc
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Throughput and Latency
Throughput: units of work completed per time unit 
Latency: time from issuing request to getting response 
Need more than just the average! 
Distributions are important 

- Histograms (or PDF) 
- Cumulative Distribution Function (CDF)
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Throughput and Latency
What affects throughput and latency?

44

Client Server
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Throughput and Latency
What affects throughput?  

- Bandwidth of network 
- Processor speed on server 
- # of processors on server 

What affects latency? 
- Network distance 
- Processor speed on server 
- Load on network/server (queueing delays, retransmissions)

45

Client Server
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Throughput
Can we predict the max capacity of a web server? 

- What info do we need?

46
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Throughput
Can we predict the max capacity of a web server? 

- What info do we need? 

Service Time = time to process a single request 
- with no other load on the system 

max capacity =  

(for a single processor system)

47

1
service time
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How does load affect Latency?
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Latency
What contributes to latency? 
How can we quantify this?
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Latency
What contributes to latency? 
How can we quantify this? 

L = RTT + queueing delay + service time 

What affects queueing delay? 

50
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Latency
What contributes to latency? 
How can we quantify this? 

L = RTT + queueing delay + service time 

queueing delay = 

51

1
(capacity - load)

1
(100 r/s - 10 r/s) = 0.01s

max capacity and load in req/sec
capacity must be > load

1
(100 r/s - 99 r/s) = 1s
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How does load affect Latency?
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Latency Distribution
We’ve been looking at average latency 
Why would a business/developer care about other 
statistics?
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Latency Distribution
We’ve been looking at average latency 
Why would a business/developer care about other 
statistics? 

- Quality of Service (QoS) guarantees might be based on a 
percentile like “90% of users have latency < 100 msec” 

- Worst case response time can be used to guide timeouts
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Distributions
Data!

55
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Distributions
Data!
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Histogram!
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Latency Distribution
Latency Histogram
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Jupyter Notebooks
Juptyter Notebooks ~ Jupyter Lab ~ ipython 
A web based python execution environment 

- "GDB for python in a browser!” — Rebecca Shanley 

You can do this locally or on Cloud9 

58

# Use pip with current python version to install stuff
python -m pip install jupyter numpy scipy pandas matplotlib 
seaborn

# run jupyter on port 8080 (open on cloud9)
ipython3 notebook --ip=0.0.0.0 —port=8080 --no-browser

# Get IP from C9 Share menu and use browser to go to  
http://IP:8080/?token=XXXXX
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Jupyter

59

Create New 
python 3 
notebook 

Write code 

<Shift-enter> 
to run a cell
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Measuring Latency
[  ] Pick your favorite web site  
[  ] Make 100 http requests, sleep 1 sec after each 
[  ] Record response time for each request 
[  ] Plot a histogram of the response times 
[  ] (optional) Plot a CDF of the response times 

Use a library like pandas or matplotlib for graphs 
- Your favorite search engine can help!
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Distributions
Data!

61

Histogram!

PDF
CDF
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CDF
Cumulative Distribution Function 

- The integral of a histogram (or PDF) 

Tells you what % of 
measurements are  
at least X good 

50% = median 
“Half of all countries 
have an index of at  
least 6.8”
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CDF
Cumulative Distribution Function 

- The integral of a histogram (or PDF) 

Tells you what % of 
measurements are  
at least X good 

99th percentile 
“Almost all countries 
have an index of at  
least 8.4”
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Latency Distributions
CDF and Percentiles are important for understanding 
application performance 

- More important to help sad/slow customers than fast ones 
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from https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
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Service Level Objectives
Performance (or other characteristic) targets 

- Also used for things like service up time (e.g., 99% availability) 

Why not have a rule for 100%?

65

90% of Get RPC calls will complete in less than 1 ms. 
99% of Get RPC calls will complete in less than 10 ms. 
99.9% of Get RPC calls will complete in less than 100 ms.
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Latency Distributions
Why do we have variance in latency? 

66

from https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
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Latency Distributions
Why do we have variance in latency? 

- Bursty client workloads, disk seeks, network drops, etc 
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from https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
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Code Reviews
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hello internet
A socket programming resource 
[  ] give your git usernames to prof 
[  ] pick a PR you will review 

- You don't need to know the language, but it 
will help 

[  ] Clone PR code 
[  ] Review code 

- Follow template linked on website 
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Java 
C 
C++ 
C# 
Go 
Lua 
Perl 
Python 
Python/Jupyter 
Ruby 
Rust 
Swift 
Scala


