
Distributed
Clouds

GW Advanced Networking and
Distributed Systems

Tim Wood and Lucas Chaufournier

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

Amazon’s Cloud

2

https://aws.amazon.com/about-aws/global-infrastructure/

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

Akamai CDN

3

https://www.akamai.com/us/en/resources/visualizing-akamai/media-delivery-map.jsp

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

Content Delivery Networks
CDNs are a form of distributed cloud
Lots of “points of presence” (PoPs)

- Each with small number of servers (6-6000)

Cache popular content close to users
- Why?

4

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

Caching
What kind of cloud applications can we cache?

What can make caching difficult?

5

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

CDN Demo
Thanks Ben and Ethan!

Let’s compare..
- A cat stored in S3 (amazon’s storage)

- http://bendogpicture.s3-website-ap-southeast-1.amazonaws.com/

- A cat stored in Amazon Cloudfront
- http://d14mfeaqszawbm.cloudfront.net/

https://tools.keycdn.com/performance
- Tests web request speed from 14 locations around the world

What do you expect to see?

6

https://tools.keycdn.com/performance

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

Cloudfront Demo

7

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

Edge Computing: The Future?

8

an augmented reality tour guide and a smart bike fitness application. We will deploy our prototype on our
university testbeds as well as NSF supported testbeds such as GENI [8] and CloudLab [9] for large scale
experimental evaluation. Our prototype will be made available in open source form to other researchers
and industry partners.

The above design elements must also account for the diverse nature of emerging applications. Each
application may require special customization of its processing environment, its network resources, and even
its management policies. Thus critical to ME2C is the design of a highly customizable, software-defined
infrastructure that can be programmatically specified by application developers.
Team and expertise. Our team consists of a mix of junior and senior researchers from three universities with
expertise in distributed and operating systems, cloud and mobile computing, and wireless networking. Wood
(George Washington University; expertise: OS virtualization and networking) has worked extensively on OS
virtualization at the intersection of cloud computing and NFV. Shenoy (UMass; expertise: cloud computing
and distributed systems) has worked on cloud computing systems for more than a decade and led the design
of GENI-funded DiCloud [10] and MassNZ micro-data center [11] testbeds. Ramakrishnan (UC Riverside;
expertise: networking) has been working on network function virtualization and new cellular networking
architectures, and has extensive prior industry experience working on the design of wide-area networks and
next-generation wireless networks at AT&T. Together this team has successfully led large multi-university
research projects and has established or participated in large experimental testbeds (e.g., NSF CloudLab site
at UMass). They have worked with one another for many years, have co-authored over 20 papers, and have
co-led research grants, resulting in a close working relationship. Thus, they have the necessary management
skills, research background, and experimental skills to carry out the proposed work.

2 Background and Limitations of Current Approaches

Edge Cloud

 Mega Cloud

Smart Vehicles
Latency sensitive, mobile,
app-specific network QoS

IoT, Smart Communities
Bandwidth intensive, M2M

communication, stream-oriented

Smart Devices
Latency sensitive, mobile,

location-aware

Edge Cloud

Internet

+ More than 10,000 servers
- High latency
- Few points of presence

+ Low latency
+ Servers integrated with
 network infrastructure
- less than 100 servers
+ Many points of presence

Cell EPC, NFV,
and Edge

Applications

Figure 2: Mobile Elastic Edge Clouds for Scalable
Low-latency Applications

In this section, we present the background and design
goals that motivate our research.

Application Characteristics. Smart devices like
phones, watches, and eye wear are becoming increas-
ingly powerful, but they still are highly constrained
in terms of both computational resources and energy.
Similarly, Internet-of-Things (IoT) devices tend to be
highly resource constrained [12, 13], yet it is expected
that IoT and Machine to Machine (M2M) communica-
tion will dominate cellular network traffic in the com-
ing years, far exceeding web and voice traffic [14, 15].
Smart vehicles and other cyber physical systems will
present their own challenges due to their high mobility
and the need for low latency communication and processing [16, 17].

These emerging applications generally differ from traditional applications because of their emphasis on
one or more of the following characteristics: they are (1) latency-sensitive, (2) bandwidth-intensive, (3)
require mobility and location-awareness, or (4) need tight integration between the network and application.

Mobile Elastic Edge Clouds. Unfortunately, today’s centralized clouds are ill-equipped to handle the
characteristics of these new application types. Large cloud data centers are often many network hops away,
making them impractical for latency-sensitive applications like augmented reality. Since cloud data centers
are typically sparsely distributed across countries or continents, they cannot provide or take advantage of
location context or higher bandwidth at the network edge. At the same time, today’s cellular networks
are inefficient for many of these application types because they are designed for voice and download-centric

3

Can we make CDNs more dynamic and
programmable?

Tim Wood - The George Washington University - Department of Computer Science

Serverless Computing
Trendy architecture that improves the agility of
microservices
What does “serverless” mean?

9

AWS Lambda

Tim Wood - The George Washington University - Department of Computer Science

Serverless Computing
Trendy architecture that improves the agility of
microservices
What does “serverless” mean?
You still need a server!
BUT, your services will not always be running

Key idea: only instantiate a service when a user
makes a request for that functionality

How will this work for stateful vs stateless services?
10

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

11

AWS Lambda

No workload means no resources being used!

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

12

AWS Lambda

C1

Request arrives, start green container

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

13

AWS Lambda

C1

Reuse that container for subsequent requests

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

14

AWS Lambda

C1

Reuse that container for subsequent requests

AWS Lambda

C1
Lambda
Gateway

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

15

AWS Lambda

C1 C2

Start new container if user needs a different function

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

16

AWS Lambda

C2

Clean up old containers once not in use

Tim Wood - The George Washington University - Department of Computer Science

Serverless Demo

17

Tim Wood - The George Washington University - Department of Computer Science

Serverless Pros/Cons
Benefits:

- Can be cheaper
- No server/vms/containers/OS management
- Very easy scalability
- Very easy to deploy

Drawbacks:
- Security issues? Less control. Less isolation?
- Slower - first request to serverless is very slow (Cold start)
- Vendor lockin
- Can’t run long running tasks (> 5 min)
- App must be Stateless (interact with a remote database)
- Development can be harder to debug
- Easy deployment can lead to sloppy deployment

18

Tim Wood - The George Washington University - Department of Computer Science

Serverless Pros/Cons
Benefits:

- Simple for developer when auto scaling up
- Pay for exactly what we use (at second granularity)
- Efficient use of resources (auto scale up and down based on

requests)
- don’t worry about reliability/server management at all

Drawbacks:
- Limited functionality (stateless, limited programming model)
- High latency for first request to each container
- Some container layer overheads plus the lambda gateway and

routing overheads
- Potentially higher and unpredictable costs
- Difficult to debug / monitor behavior
- Security

19

Tim Wood - The George Washington University - Department of Computer Science

This Semester
I hope you have…

- become more comfortable with at least one new language
- gained a deeper understanding of how networks work
- gotten some hands-on experience with cloud services
- gown an appreciation for the challenges of distributed systems

20

Tim Wood - The George Washington University - Department of Computer Science

What did you learn?
Networking

- UDP vs TCP
- Socket programming

- In the future: http libraries, Remote Procedure Calls
- Network Layers
- Performance, Throughput vs Latency, scalability
- Concurrency models: threading vs event based, etc

- Lightweight threading models (go routines)

21

Tim Wood - The George Washington University - Department of Computer Science

What did you learn?
Distributed Systems

- Reliability/Consensus - two generals, byzantine fault tolerance
- Raft - Etcd, zookeeper, consul,

- Microservices / serverless (Architectural trends)
- Trend: application development should be the focus instead of

application deployment
- HTTP/REST - web technologies can be used for many

applications
- Scale up vs Scale out

22

Tim Wood - The George Washington University - Department of Computer Science

What did you learn?
Cloud Computing

- Load Balancing - ties back to networking layers
- AWS is not a total monopoly

- Try some other services!
- Containers vs VMs

- Surprise! I sort of lied to you. AWS Lambda is built on super fast, super
lightweight virtual machines (Firecracker)

- Hybrid Cloud - combine your own servers with cloud servers

23

