Distributed

Clouds

Amazon’s Cloud

o
00
o oQ
o
6)0 %00 © o o o
£ o
o)
(o
(o)
o
o o
O Regions
O Coming Soon https://aws.amazon.com/about-aws/global-infrastructure/

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

Akamai CDN

https://www.akamai.com/us/en/resources/visualizing-akamai/media-delivery-map.jsp

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

Content Delivery Networks

CDNs are a form of distributed cloud

Lots of “points of presence” (PoPs)
- Each with small number of servers (6-6000)

Cache popular content close to users
- Why?

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

Caching

What kind of cloud applications can we cache”?

What can make caching difficult

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

CDN Demo

Thanks Ben and Ethan!

Let’s compare.. Lo
- A cat stored in S3 (amazon’s storage -

- http://bendogpicture.s3-website-ap-southeast-1.amazonaws.com/

- A cat stored in Amazon Cloudfront

- http://d14mfeagszawbm.cloudfront.net/

https://tools.keycdn.com/performance
- Tests web request speed from 14 |ocations around the world

What do you expect to see?

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

https://tools.keycdn.com/performance

Cloudfront Demo

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

Edge Computing: The Future?

Can we make CDNs more dynamic and
programmable’?

1 + More than 10,000 servers
- High latency
- Few points of presence

+ Low latency

+ Servers integrated with
network infrastructure

- less than 100 servers

+ Many points of presence

| Cell EPC, NFV,
and Edge
Applications

J

Edge Cloud Edge Cloud

] A
o
- [I =
Smart Devices loT, Smart Communities Smart Vehicles
Latency sensitive, mobile, Bandwidth intensive, M2M Latency sensitive, mobile,
location-aware communication, stream-oriented app-specific network QoS

Advanced Networking and Distributed Systems - Wood & Chaufournier - GWU CS

Serverless Computing

Trendy architecture that improves the agility of
MICroServices

What does “serverless” mean®?

"
A

Azure .
Functions Google Cloud Functions

APACHE

OpenWhisk™

O

Tim Wood - The George Washington University - Department of Computer Science

Serverless Computing

Trendy architecture that improves the agility of
MICroServices

What does “serverless” mean®
You still need a server!

SBUT, your services will not always be running

Key idea: only instantiate a service when a user
makes a request for that functionality

How will this work for stateful vs stateless services?

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is Killed

No workload means no resources being used!

AWS Lambda

N ‘O, -

O

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is Killed

Request arrives, start green container

C1

3 2 AWS Lambda

., ‘QV ')

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is Killed

Reuse that container for subsequent requests

C1

AWS Lambda

$¥ Gy

., ‘QV ')

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is Killed

Reuse that container for subsequent requests

C1

3 o
Lambda
Gateway AWS Lambda AWS Lambda

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup

AWS LLambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is Killed

Start new container if user needs a different function

g_

o1 .
AWS Lambda BB 3

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup

AWS LLambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is Killed

Clean up old containers once not in use

AWS Lambda BB 3

-

Tim Wood - The George Washington University - Department of Computer Science

Serverless Demo

Tim Wood - The George Washington University - Department of Computer Science

Serverless Pros/Cons

Senefits:
- Gan be cheaper
- No server/vms/containers/OS management
- Very easy scalability
- Very easy to deploy

Drawbacks:
- Security issues”? Less control. Less isolation?

- Slower - first request to serverless is very slow (Cold start)
- Vendor lockin

- Can’t run long running tasks (> 5 min)

- App must be Stateless (interact with a remote database)

- Development can be harder to debug

- BEasy deployment can lead to sloppy deployment

Tim Wood - The George Washington University - Department of Computer Science

Serverless Pros/Cons

Senefits:
- Simple for developer when auto scaling up
- Pay for exactly what we use (at second granularity)

- Efficient use of resources (auto scale up and down based on
requests)

- don’t worry about reliability/server management at all

Drawlbacks:
- Limited functionality (stateless, limited programming model)

- High latency for first request to each container

- Some container layer overheads plus the lamlbda gateway and
routing overheads

- Potentially higher and unpredictable costs
- Difficult to debug / monitor behavior
- Security

Tim Wood - The George Washington University - Department of Computer Science

This Semester

| hope you have..
- become more Comfortable with at least one new language

- gained a deeper understanding of how networks work
- gotten some hands-on experience with cloud services
- gown an appreciation for the challenges of distributed systems

Tim Wood - The George Washington University - Department of Computer Science

What did you learn?

Networking
- UDP vs TCP

- Socket programming
- In the future: http libraries, Remote Procedure Calls

- Network Layers
- Performance, Throughput vs Latency, scalability

- Concurrency models: threading vs event based, etc
- Lightweight threading models (go routines)

Tim Wood - The George Washington University - Department of Computer Science

What did you learn?

Distributed Systems
- Reliability/Consensus - two generals, byzantine fault tolerance
- Raft - Etcd, zookeeper, consul,

- Microservices / serverless (Architectural trends)

- Trend: application development should e the focus instead of
application deployment

- HTTP/REST - web technologies can be used for many
applications

- Scale up vs Scale out

Tim Wood - The George Washington University - Department of Computer Science

What did you learn?

Cloud Computing
- Load Balancing - ties back to networking layers
- AWS Is not a total monopoly
- Try some other services!

- Containers vs VMs

- Surprise! | sort of lied to you. AWS Lambda is built on super fast, super
lightweight virtual machines (Firecracker)

vorid Cloud - combine your own servers with cloud servers

Tim Wood - The George Washington University - Department of Computer Science

