
Advanced Networking
and Distributed

Systems

Module 1: Network Programming

GW CSCI 3907/6907
Timothy Wood and Lucas Chaufournier

Tim Wood - The George Washington University - Department of Computer Science

Welcome!
Advanced Networking & Distributed Systems

CS 3907.88 / 6907.87
Course Goals:

- Learn how applications communicate over a network
- Learn to build large scale applications built from multiple

components
- Learn about the performance, reliability, and consistency

challenges that arise in distributed computing
- Get hands-on practice writing a lot of code!
- Get hands-on practice using cloud services!

2

Tim Wood - The George Washington University - Department of Computer Science

Prof. Tim Wood
v

3

I teach: Software Engineering,
Operating Systems, Sr. Design
I like: distributed systems,
networks, building cool things

Tim Wood - The George Washington University - Department of Computer Science

Lucas Chaufournier

4

I teach: Distributed Systems
I like: distributed systems, peer
to peer, edge computing, and
prototyping systems

Tim Wood - The George Washington University - Department of Computer Science

Who are you?
Tell us:

- Your name
- Your degree program/year
- What is your favorite language? What is a language you want to

learn?

This class has a very wide range of students in it!

5

We will do our best to make the course
useful and relevant for all students!

We will have different expectations based
on your level!

Tim Wood - The George Washington University - Department of Computer Science

What will we do?
Part 1: Networking

- Socket Programing
- Threading Models
- Understanding Performance
- Communication Frameworks
- High Performance Middleboxes

Part 2: Distributed Systems
- Scalable App Development
- Consensus and Consistency
- Cloud Service Management

6

How will we do it?
- Interactive lectures
- In class exercises
- Group projects
- Exams

Tim Wood - The George Washington University - Department of Computer Science

Course Rules
Attendance is required at all classes

- Notify me in advance if you have a good excuse to miss
- If you are sick, stay away

No laptops during lecture portions of class!
- Only slides with green bottom bar!

Be civil and supportive
- This class has students with a very wide range of backgrounds

Ask lots of questions
- If you are unsure, someone else probably is too!

Everyone in the room should be participating
- Ask/answer questions in class or on Slack

7

Tim Wood - The George Washington University - Department of Computer Science

Class Resources
Website: https://gwadvnet20.github.io/
Github org: https://github.com/gwAdvNet20
Slack: Messaging app
Amazon Web Services Educate

- Each students get $100 credit towards cloud resources

8

https://gwadvnet20.github.io/
https://github.com/gwAdvNet20

Tim Wood - The George Washington University - Department of Computer Science

Grading
(To be determined)
Attendance and Participation
Group Projects
Midterm and Final Exam

9

Networking
Basics

Tim Wood - The George Washington University - Department of Computer Science

How to watch a cat video?

11

????????????????

Me a cat

Tim Wood - The George Washington University - Department of Computer Science

How to watch a cat video?

12

catvids.org/fishes.gif

1. Convert hostname to an IP address with DNS
2. Establish a socket connection to the IP and port

- Use a pre-defined standard to decide port (e.g., 80=web traffic)

3. Send a request for the video
- Use a pre-defined protocol to format the request (e.g., HTTP)

4. Receive the video from the server

Internet Design
Principles

Protocols define how to
communicate

Protocols can be layered for
complexity

Tim Wood - The George Washington University - Department of Computer Science

Protocol Layers
application:

- FTP, SMTP, HTTP

presentation/session:
- let’s ignore these (not used in TCP)

transport: data transfer
- TCP, UDP

network: finding routes
- IP, routing protocols

link: adjacent nodes
- Ethernet, 802.111 (WiFi), PPP

physical:
- bits on the wire or in the air

14

application

presentation

session

transport

network

link

physical

Tim Wood - The George Washington University - Department of Computer Science

Software Layers
Network Interface Card (NIC)

- Reads “bytes on wire”

Driver
- Moves data from NIC to main memory

Internet Protocol (IP)
- Handles addressing and routing

Transmission Control Protocol (TCP)
- Ensures reliable, ordered transmission of

packets and manages congestion

Socket
- Provides interface between OS and App

15

IP

TCP

Driver

Socket

NIC

Application

O
S

Ke
rn

el

Tim Wood - The George Washington University - Department of Computer Science

Sockets

16

IP

TCP

Driver

Socket

NIC

Client

O
S

Ke
rn

el

IP

TCP

Driver

Socket

NIC

Server

O
S

Ke
rn

el

Magic! Magic
Tubes!

More
Magic!

Tim Wood - The George Washington University - Department of Computer Science

Abstractions
Networking (and all CS) is about abstraction layers!
We don’t need to know how something works if we
understand its inputs and outputs

…but we do need to understand the guarantees that
lower abstraction layers are providing!

17

TCP Socket TCP SocketReliable Tube

UDP Socket UDP SocketUnreliable Tube

Tim Wood - The George Washington University - Department of Computer Science

Socket API
Socket
Connect
Bind, Listen, Accept
Send, Receive
Close

18

https://commons.wikimedia.org/wiki/File:InternetSocketBasicDiagram_zhtw.png

Cloud 9

(See instructions on website)

Tim Wood - The George Washington University - Department of Computer Science 20

Tim Wood - The George Washington University - Department of Computer Science 21

Tim Wood - The George Washington University - Department of Computer Science 22

Tim Wood - The George Washington University - Department of Computer Science 23

Hello Internet!

In-class Exercise

Tim Wood - The George Washington University - Department of Computer Science

Socket programming practice!
[] Setup your Cloud 9 environment
[] Write a client and a server in a unique language
3-4 person groups

- Project Manager: Carefully read all requirements
- Language Expert: Find the required APIs
- Developer(s): Writes code with help of others

Each group must use a different language!
You need to test against another group’s client/server
Create a Pull Request to add your code to the class’s
public repository

25

Tim Wood - The George Washington University - Department of Computer Science

Hello Internet
Finish your client and server
Test against code written by another group
You must follow the protocol specified in README
Your README should describe your language’s API
Create a Pull Request on GitHub when done

26

Python/Jupyter
Java
C
Rust
Go
c++
C#

Javascript
Python
Swift
lua
Scala
Ruby
Perl

Selected  
Languages

Tim Wood - The George Washington University - Department of Computer Science

What did we learn?

27

END OF CLASS
1/14

We started the HelloInternet exercise, but did not
finish. We will resume this in the next class!

Packets and Protocols

Data and Algorithms

Tim Wood - The George Washington University - Department of Computer Science

What happens when…
You call socket.connect() ?

30

Tim Wood - The George Washington University - Department of Computer Science

What happens when…
You call socket.connect() ? // 10.1.2.3 port 9999

Figure out how to reach 10.1.2.3
Get a local (random) port number from OS
Create a packet to setup connection (TCP)
Complete 3-way handshake
Return when connection is established

31

Tim Wood - The George Washington University - Department of Computer Science

What happens when…
You call socket.send(“Hello world”) ?

32

Tim Wood - The George Washington University - Department of Computer Science

What happens when…
You call socket.send(“Hello world”) ?

Copy data to be sent into kernel
- Is all data guaranteed to be sent to kernel?

Probably not!

Break data into chunks based on
packet size (1500b)
Send packet(s) over existing
connection
Return once data is in buffer to be sent

- No guarantee that other side has received it!

33

IP

TCP

Driver

Socket

NIC

Application

O
S

Ke
rn

el

Tim Wood - The George Washington University - Department of Computer Science

What happens when…
You call x = socket.recv() ?

34

Tim Wood - The George Washington University - Department of Computer Science

What happens when…
You call x = socket.recv(10000) ?

Check if there is data waiting in the kernel’s receive
buffer

- Guaranteed to have received all 10000 bytes? Probably not!

If data, copy it into user program and return
If no data, block program until new data arrives

- Then copy data and wake up program

35

Tim Wood - The George Washington University - Department of Computer Science

What is a packet?
It’s really just a blob of data!

- But its structure is well defined by protocols

36

application - HTTP: Request web content

transport - TCP: Reliably send streams of data over a
connection

network - IP: Route data across networks

link - Ethernet: Send chunks of data

physical

Tim Wood - The George Washington University - Department of Computer Science

What is a packet?
It’s really just a blob of data!

- But its structure is well defined by protocols

37

application - HTTP

transport - TCP

network - IP

link - Ethernet

physical
GET /index.html HTTP/1.1 …

Images from https://networkengineering.stackexchange.com/questions/25563/what-is-the-reason-for-the-different-order-of-the-source-and-destination-in-a-l2

Tim Wood - The George Washington University - Department of Computer Science

Let’s try HTTP
We can use telnet to test simple 
text-based network protocols
Usage: telnet host port

38

faculty.cs.gwu.edutelnet

GET /timwood/simple.html HTTP/1.1
Host: faculty.cs.gwu.edu

(blank line)

HTTP/1.1 200 OK
Server: GitHub.com
Content-Type: text/html; charset=utf-8
Last-Modified: Thu, 06 Sep 2018 17:57:20
GMT
ETag: "5b916a80-b6"
Access-Control-Allow-Origin: *
Expires: Thu, 06 Sep 2018 18:09:00 GMT 
…

TCP and UDP

Transport Protocols

Tim Wood - The George Washington University - Department of Computer Science

UDP Unreliable Datagrams
https://tools.ietf.org/html/rfc768 - 3 page spec

40

This User Datagram Protocol (UDP) is defined to make available a
datagram mode of packet-switched computer communication in the
environment of an interconnected set of computer networks. This protocol
assumes that the Internet Protocol (IP) [1] is used as the underlying protocol.

This protocol provides a procedure for application programs to send
messages to other programs with a minimum of protocol mechanism.
The protocol is transaction oriented, and delivery and duplicate protection
are not guaranteed.

https://tools.ietf.org/html/rfc768

Tim Wood - The George Washington University - Department of Computer Science

UDP vs TCP

41

3X space overhead - what do we get for that?

Tim Wood - The George Washington University - Department of Computer Science

TCP Reliable Streams
https://tools.ietf.org/html/rfc761 - 84 page spec

42

The Transmission Control Protocol (TCP) is intended for use as a highly reliable
host-to-host protocol between hosts in packet-switched computer
communication networks, and especially in interconnected systems of such
networks…

TCP is a connection-oriented, end-to-end reliable protocol designed to fit
into a layered hierarchy of protocols which support multi-network applications.

Tim Wood - The George Washington University - Department of Computer Science

TCP Properties
Basic Data Transfer: send data as a stream
Reliability: recover from data that is damaged, lost,
duplicated, or delivered out of order
Flow Control: receiver can control the sending rate
Multiplexing: ports allow a host to run multiple
services
Connections: Clients and servers must coordinate
at the start and end of a data stream
Precedence and Security: Flags in header can
specify the security level and priority of packets

43

Tim Wood - The George Washington University - Department of Computer Science

UDP vs TCP

44

How to achieve reliability and flow control?

Tim Wood - The George Washington University - Department of Computer Science

TCP Properties
Connections: based on 3-way handshake

- 1) Client sends a SYN packet to synchronize with server
- 2) Server responds with SYN-ACK to acknowledge client
- 3) Client responds with ACK to complete the setup

SYN and ACK are bits set in the Flags header field
After this, client/server can send data as normal

45

End of class 1/21

Also briefly introduced Reliable UDP Assignment

Tim Wood - The George Washington University - Department of Computer Science

Today 1/28
Observing and capturing packets in the wild

Network forensic puzzles

More on TCP reliability

Reliable UDP Assignment

47

Tim Wood - The George Washington University - Department of Computer Science

Let’s look at packets!
We can use tshark to observe incoming and
outgoing packet data

48

Tim Wood - The George Washington University - Department of Computer Science

Let’s look at packets!
Forensics puzzles! Can you catch a spy?

Use tshark or wireshark
- (GUI version you can install locally)

49

TCP Reliability
and Congestion Control

GW CSCI 3907/6907 Adv Networking and Distributed Systems
Prof. Timothy Wood

Tim Wood - The George Washington University - Department of Computer Science

TCP Properties
Reliability: checksums

- Uses a 16 bit hash calculated over header/data as checksum
- Receiver can calculate checksum and verify it matches what is

stored in the packet
- Is a checksum perfect?

What to do if checksum doesn’t match?

51

Tim Wood - The George Washington University - Department of Computer Science

TCP Properties
Reliability: based on sequence numbers and ACKs

- Client/server start connection with a random sequence number
- On every send, add the total amount of data transmitted
- On receive, reply with ACK specifying next expected seq number

What to do…
- If no ACK received?
- If wrong ACK received?

52

Tim Wood - The George Washington University - Department of Computer Science

What happens?

53

ACK lost

Host BHost A

Seq=92, 8 bytes of data

ACK=100
X

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

timeout and resend! 
(same if original packet lost)

Slide adapted from.
Computer Networking: A Top Down Approach  

March 2012
Copyright J.F Kurose and K.W. Ross,  

All Rights Reserved

Tim Wood - The George Washington University - Department of Computer Science

Wait for ACKs?
Should the sender wait for an ACK after each
packet before sending another one?
Benefits / Drawbacks?

54

Tim Wood - The George Washington University - Department of Computer Science

Wait for ACKs?
Should the sender wait for an ACK after each
packet before sending another one?
Benefits / Drawbacks?

55

Slide adapted from.
Computer Networking: A Top Down Approach  

March 2012
Copyright J.F Kurose and K.W. Ross,  

All Rights Reserved

Tim Wood - The George Washington University - Department of Computer Science

Wait for ACKs?
Should the sender wait for an ACK after each
packet before sending another one?
Benefits / Drawbacks?

Do the math!

56

Tim Wood - The George Washington University - Department of Computer Science

Pipelining Sends
Waiting for each ACK makes very poor use of our
available bandwidth!

- Better to send a “window” of packets as a pipeline

57

first packet bit transmitted, t = 0
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081 3L / R
RTT + L / R

=
Slide adapted from.

Computer Networking: A Top Down Approach  
March 2012

Copyright J.F Kurose and K.W. Ross,  
All Rights Reserved

Tim Wood - The George Washington University - Department of Computer Science

What happens?

58

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut

Seq=100, 20 bytes of data

1st ACK lost

X X

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

2nd ACK is  
cumulative!

Slide adapted from.
Computer Networking: A Top Down Approach  

March 2012
Copyright J.F Kurose and K.W. Ross,  

All Rights Reserved

Tim Wood - The George Washington University - Department of Computer Science

Cumulative ACKs
ACK 120 means ALL bytes
up to that point are received

Why use cumulative instead
of individual ACKs?

59

X

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

2nd ACK is  
cumulative!

Tim Wood - The George Washington University - Department of Computer Science

Wait for ACKs?
Should the receiver immediately send an ACK?
Benefits / Drawbacks?

60

Tim Wood - The George Washington University - Department of Computer Science

TCP Reliability

61

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Slide adapted from.
Computer Networking: A Top Down Approach  

March 2012
Copyright J.F Kurose and K.W. Ross,  

All Rights Reserved

Tim Wood - The George Washington University - Department of Computer Science

TCP Fast Retransmit

62

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100
tim

eo
ut ACK=100

ACK=100
ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Slide adapted from.
Computer Networking: A Top Down Approach  

March 2012
Copyright J.F Kurose and K.W. Ross,  

All Rights Reserved

Tim Wood - The George Washington University - Department of Computer Science

How many packets to send?
Using a larger window leads to better link utilization

- So why not just use a window of 1,000,000?

Benefit of large window?

Drawback of large window?

63

Tim Wood - The George Washington University - Department of Computer Science

How many packets to send?
Using a larger window leads to better link utilization

- So why not just use a window of 1,000,000?

Benefit of large window?
- Can send more data before waiting for ACK

Drawback of large window?
- With cumulative ACK, it can be hard for sender to know exactly

what it needs to resend
- Sending at too high a rate may cause higher packet loss!

This leads to why TCP does Congestion Control!
- We’ll just cover the basics…

64

Tim Wood - The George Washington University - Department of Computer Science

Windows
Window size controls # of packets in flight

65

already  
ack’ed

sent, not 
yet ack’ed

ready to  
send

free buffer 
space

Sender’s  
view of 

Sequence  
Numbers

Tim Wood - The George Washington University - Department of Computer Science

Windows
Window size controls # of packets in flight

66

already  
ack’ed

sent, not 
yet ack’ed

ready to  
send

free buffer 
space

Sender’s  
view of 

Sequence  
Numbers

Receiver’s  
view of 

Sequence  
Numbers already  

ack’ed Missing!

Out of order,  
not yet ack’ed

free buffer 
space

Remember
that TCP is

bidirectional,
so this all
happens

twice!

Tim Wood - The George Washington University - Department of Computer Science

Congestion Control Basics
How should we adjust window size?

- Let’s assume client is sending a large file to server

67

Tim Wood - The George Washington University - Department of Computer Science

Congestion Control Basics
How should we adjust window size?

- Let’s assume client is sending a large file to server

Startup:
- use a small window since you don’t know anything about

receiver

No drops for a while:
window_size++; // Send faster!

Drop detected:
window_size = window_size/2; // whoa! slow down!

68

Additive Increase, Multiplicative Decrease (AIMD)

Project 1

Reliable UDP File Sender

Tim Wood - The George Washington University - Department of Computer Science

Reliable File Transfer
[] Write a client that can reliably send a file

The network might drop, reorder, duplicate, or
corrupt packets!
Provided with a receiver and a protocol definition

- Text based messages

70

Sender

Receiver

Tim Wood - The George Washington University - Department of Computer Science

Requirements
Groups of size 2 or 3

- If using 3, you must get my approval AND complete an extra
feature. Contact me on slack!

Undergrads - can use python starter code as a base
Grads - must use a programming language other
than python
Mixed grad/undergrad - must use a programming
language other than python

71

Tim Wood - The George Washington University - Department of Computer Science

Not exactly TCP
Be sure to read the protocol carefully!
Protocol messages are all strings
Sequence numbers count packets, not bytes
etc

72

Tim Wood - The George Washington University - Department of Computer Science

Security Groups

73

Tim Wood - The George Washington University - Department of Computer Science

Testing Harness
Python based tool to help evaluate client/server

- Provides 2 simple test cases: no loss and 50% loss

74

python TestHarness.py -s YourSender.py -r Receiver.py

TestHarness.py

YourSender.py Receiver.py

Wow, sockets
are cool!

Tim Wood - The George Washington University - Department of Computer Science

Reliable File Transfer
[] Write a client that can reliably send a file

The network might drop, reorder, duplicate, or
corrupt packets!
Provided with a receiver and a protocol definition

- Text based messages

75

Sender

Receiver

